0%

YOLOv3

YOLOv3理解和复现(backbone并没用darknet53)的一点记录。

改进点

相比YOLOv2主要改进点为:

  1. 多尺度:网络backbone使用FPN,融合不同粒度的学习(语义和像素信息);detection head也分成3个尺度的feature map输出,更加适用于不同目标大小的检测;
  2. 多属性:分类损失改为 二元交叉熵损失,也就是同一个目标可以属于多个类,贴近实际应用场景。

网络结构

原论文网络结构采用darknet-53,针对COCO数据集(80类,故每个detection head的输出 为):

layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BFLOPs
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BFLOPs
2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BFLOPs
3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BFLOPs
4 res 1 208 x 208 x 64 -> 208 x 208 x 64
5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BFLOPs
6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BFLOPs
7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BFLOPs
8 res 5 104 x 104 x 128 -> 104 x 104 x 128
9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BFLOPs
10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BFLOPs
11 res 8 104 x 104 x 128 -> 104 x 104 x 128
12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BFLOPs
13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
15 res 12 52 x 52 x 256 -> 52 x 52 x 256
16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
18 res 15 52 x 52 x 256 -> 52 x 52 x 256
19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
21 res 18 52 x 52 x 256 -> 52 x 52 x 256
22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
24 res 21 52 x 52 x 256 -> 52 x 52 x 256
25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
27 res 24 52 x 52 x 256 -> 52 x 52 x 256
28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
30 res 27 52 x 52 x 256 -> 52 x 52 x 256
31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
33 res 30 52 x 52 x 256 -> 52 x 52 x 256
34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
$\color{SpringGreen}{36}$ res 33 52 x 52 x 256 -> 52 x 52 x 256
37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BFLOPs
38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
40 res 37 26 x 26 x 512 -> 26 x 26 x 512
41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
43 res 40 26 x 26 x 512 -> 26 x 26 x 512
44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
46 res 43 26 x 26 x 512 -> 26 x 26 x 512
47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
49 res 46 26 x 26 x 512 -> 26 x 26 x 512
50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
52 res 49 26 x 26 x 512 -> 26 x 26 x 512
53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
55 res 52 26 x 26 x 512 -> 26 x 26 x 512
56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
58 res 55 26 x 26 x 512 -> 26 x 26 x 512
59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
$\color{blue}{61}$ res 58 26 x 26 x 512 -> 26 x 26 x 512
62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
63 conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
65 res 62 13 x 13 x 1024 -> 13 x 13 x 1024
66 conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
68 res 65 13 x 13 x 1024 -> 13 x 13 x 1024
69 conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
71 res 68 13 x 13 x 1024 -> 13 x 13 x 1024
72 conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
74 res 71 13 x 13 x 1024 -> 13 x 13 x 1024
75 conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
77 conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
$\color{blue}{79}$ conv 512 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 512 0.177 BFLOPs
80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x 1024 1.595 BFLOPs
81 conv 255 1 x 1 / 1 13 x 13 x 1024 -> 13 x 13 x 255 0.026 BFLOPs
82 $\color{red}{detection}$
83 route $\color{blue}{79}$
84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BFLOPs
85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
86 route 85 $\color{blue}{61}$
87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BFLOPs
88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
$\color{SpringGreen}{91}$ conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BFLOPs
92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BFLOPs
93 conv 255 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 255 0.052 BFLOPs
94 $\color{red}{detection}$
95 route $\color{SpringGreen}{91}$
96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BFLOPs
97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
98 route 97 $\color{SpringGreen}{36}$
99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BFLOPs
100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BFLOPs
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs
105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.104 BFLOPs
106 $\color{red}{detection}$

多尺度

骨干结构参考了FPN结构

YOLOv3采用多个尺度进行预测(之所以从小到大解释,因为大尺度依赖小尺度的上采样):

  • 小尺度:,网络接受的图,经过5个步长为2的卷积模块,得到第79层特征图,然后接上两层卷积以进行检测回归,最终得到输出特征图

  • 中尺度:,顺着主骨干网络第79层,用卷积核将channel减半,然后上采样得到;取主骨干网络的第61层分支concat起来,得到特征图,然后接上7层卷积以进行检测回归,最终得到输出特征图

  • 大尺度:,顺着中尺度的detection head第91层,用卷积核将channel减半,然后上采样得到;取主骨干网络的第36层分支concat起来,得到特征图,然后接上7层卷积以进行检测回归,最终得到输出特征图

对应的,通过聚类而得到的anchor box,也要分配到三个尺度的检测分支去:将尺度大的anchor分配到感受野大的(也就是下采样stride大的检测分支),将尺度小的anchor分配到感受野小的(也就是下采样stride小的检测分支)。

另外,训练的时候也用了多尺度的输入进行实验。

多属性

YOLOv3损失函数与YOLOv2损失函数是一致的,唯一的区别是分类误差部分,需要修改为:

也就是说,由于分类概率的预测改为每个类都是二元交叉熵预测,分类损失需要对所有类别都添加损失项,而不像YOLOv2 softmax那种计算方式。

实现代码

zheng-yuwei/YOLOv3-tensorflow

Reference

qqwweee/keras-yolo3

目标检测网络之 YOLOv3

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD

感谢对原创的支持~